Real-world projects from industry experts
With real-world projects and immersive content built in partnership with top-tier companies, you’ll master the tech skills companies want.
Up your game by streamlining the integration of machine-learning models and deploying them to a production-level environment.
At 10 hours/week
Get access to the classroom immediately upon enrollment
In this program, you will build the DevOps skills required to automate the various aspects and stages of machine learning model building and monitoring.
Prior experience with Python and Machine Learning.
Develop skills that are essential for deploying production machine learning models. First, you will put your coding best practices on auto-pilot by learning how to use PyLint and AutoPEP8. Then you will further expand your git and Github skills to work with teams. Finally, you will learn best practices associated with testing and logging used in production settings in order to ensure your models can stand the test of time.
This course empowers the students to be more efficient, effective, and productive in modern, real-world ML projects by adopting best practices around reproducible workflows. In particular, it teaches the fundamentals of MLops and how to: a) create a clean, organized, reproducible, end-to-end machine learning pipeline from scratch using MLflow b) clean and validate the data using pytest c) track experiments, code, and results using GitHub and Weights & Biases d) select the best-performing model for production and e) deploy a model using MLflow. Along the way, it also touches on other technologies like Kubernetes, Kubeflow, and Great Expectations and how they relate to the content of the class.
This course teaches students how to robustly deploy a machine learning model into production. En route to that goal students will learn how to put the finishing touches on a model by taking a fine grained approach to model performance, checking bias, and ultimately writing a model card. Students will also learn how to version control their data and models using Data Version Control (DVC). The last piece in preparation for deployment will be learning Continuous Integration and Continuous Deployment which will be accomplished using GitHub Actions and Heroku, respectively. Finally, students will learn how to write a fast, type-checked, and auto-documented API using FastAPI.
This course will help students automate the devops processes required to score and re-deploy ML models. Students will automate model training and deployment. They will set up regular scoring processes to be performed after model deployment, and also learn to reason carefully about model drift, and whether models need to be retrained and re-deployed. Students will learn to diagnose operational issues with models, including data integrity and stability problems, timing problems, and dependency issues. Finally, students will learn to set up automated reporting with API’s.
With real-world projects and immersive content built in partnership with top-tier companies, you’ll master the tech skills companies want.
On demand help. Receive instant help with your learning directly in the classroom. Stay on track and get unstuck.
You’ll have access to Github portfolio review and LinkedIn profile optimization to help you advance your career and land a high-paying role.
Tailor a learning plan that fits your busy life. Learn at your own pace and reach your personal goals on the schedule that works best for you.
We provide services customized for your needs at every step of your learning journey to ensure your success.
project reviewers
projects reviewed
reviewer rating
avg project review turnaround time
Josh has been sharing his passion for data for nearly a decade at all levels of university, and as a Data Science Instructor for coding bootcamps. He's used data science for work ranging from cancer research to process automation.
Giacomo Vianello is an end-to-end data scientist with a passion for state-of-the-art but practical technical solutions. He is Principal Data Scientist at Cape Analytics, where he develops AI systems to extract intelligence from geospatial imagery bringing, cutting-edge AI solutions to the insurance and real estate industries.
Justin a Senior Data Scientist at Optum where he works to make healthcare more efficient with natural language processing and machine learning. Previously he was a Data Scientist at the US Census Bureau. His doctorate is from the University of California, Irvine where he studied theoretical physics.
Bradford Tuckfield is a data scientist and writer. He has worked on applications of data science in a variety of industries. He's the author of Dive Into Algorithms, forthcoming with No Starch Press.
Ulrika has been with Ericsson for 21 years in various leadership roles, out of which 11 years in the Data and AI space. Ulrika holds a Master of Science degree from University of Lund in Sweden and is also author of seven published books in Data Science.
Streamline the integration of machine-learning models and deploy them to a production-level environment.
On average, successful students take 4 months to complete this program.
Data and AI professionals today are expected to be able to go beyond training ML models to packaging, deploying, and monitoring them in production environments. Whether you’re a Data Scientist, Data Engineer, Software Engineer, or any other role working with ML models, building this DevOps skillset will set you apart.
The skills you build in this program will be instrumental in roles such as Data Scientist, Data Engineer, Machine Learning Engineer, DevOps Engineer, and beyond.
ML DevOps is leveraged in a wide range of industries, from public transportation and healthcare to engineering, safety, and manufacturing. From models that automatically recognize certain types of medication to models that anticipate the effects of earthquakes, autonomous (and deployed!) systems yield real-world impact with the assistance of MLOps.
This course is for individuals who recognize the importance of machine learning model deployment but struggle to push the models they have developed in modeling environments to production to be self-functioning.
No. This Nanodegree program accepts all applicants regardless of experience and specific background.
A well-prepared student will already be familiar with:
To prepare, we recommend the Introduction to Machine Learning and AI Programming with Python programs to build your comfortability with ML concepts and using python in an AI context.
The Machine Learning DevOps Engineer Nanodegree program is comprised of content and curriculum to support four (4) projects. We estimate that students can complete the program in four (4) months working 10 hours per week.
Each project will be reviewed by the Udacity reviewer network. Feedback will be provided and if you do not pass the project, you will be asked to resubmit the project until it passes.
Access to this Nanodegree program runs for the length of time specified above. If you do not graduate within that time period, you will continue learning with month-to-month payments. See the Terms of Use and FAQs for other policies regarding the terms of access to our Nanodegree programs.
Please see the Udacity Program FAQs for policies on enrollment in our programs.
You will need a computer running a 64-bit operating system with at least 8GB of RAM, along with administrator account permissions sufficient to install programs including Anaconda with Python 3.x and supporting packages.
Most modern Windows, OS X, and Linux laptops or desktops will work well; we do not recommend a tablet since they typically have less computing power. We will provide you with instructions on how to install the required software packages. Additional tech requirements can be found at https://www.udacity.com/tech/requirements.