Udacity Logo
Log InJoin for Free

Generative AI

Nanodegree Program

Embark on a transformative journey into Generative AI! We'll start by diving into the essentials with an introductory course, progress to mastering text generation with Large Language Models, unravel the complexities of image creation in computer vision and cap it off by bringing AI to life in real-world applications. From foundational theories to building sophisticated chatbots and AI agents, this program will empower you with job-ready skills in the exciting field of Generative AI.

Embark on a transformative journey into Generative AI! We'll start by diving into the essentials with an introductory course, progress to mastering text generation with Large Language Models, unravel the complexities of image creation in computer vision and cap it off by bringing AI to life in real-world applications. From foundational theories to building sophisticated chatbots and AI agents, this program will empower you with job-ready skills in the exciting field of Generative AI.

Intermediate

4 months

Real-world Projects

Completion Certificate

Last Updated February 13, 2024

Skills you'll learn:
Vectors • Retrieval-Augmented Generation • OpenAI API • LangChain
Prerequisites:
Database fundamentals • Intermediate Python

Courses In This Program

Course 1 45 minutes

Welcome to the Nanodegree Program!

Welcome to Udacity! We're excited to share more about your Nanodegree program and start this journey with you!

Course 2 4 weeks

Generative AI Fundamentals

Dive into generative AI with this course, which explores its fundamental principles and relationship to prior artificial intelligence innovations. We will walk through popular generative models and how they work, how deep learning models are developed using tools like PyTorch and Hugging Face, and finally, how to customize pre-trained open-source models for a specific use case. In the project, you will apply a cutting-edge technique called parameter-efficient fine-tuning (PEFT), which allows for the adaptation of massive foundation models with minimal usage of computational resources.

Course 3 4 weeks

Large Language Models (LLMs) & Text Generation

Dive deeper into how computers understand and create language, and learn how to build a custom chatbot using unsupervised machine learning, prompt engineering, and retrieval augmented generation. We'll start with a high-level overview of the types of LLMs, the differences between them, and how best to account for their strengths and weaknesses. Then we'll get into the internal details, including natural language processing (NLP) techniques like tokenization, as well as modern transformer architectures and attention mechanisms. Finally, we'll build a practical LLM application that combines an LLM with a custom dataset.

Course 4 4 weeks

Computer Vision and Generative AI

Learn how computers process and understand image data, then harness the power of the latest Generative AI models to create new images.

Taught By The Best

Photo of Brian Cruz

Brian Cruz

Head of Core AI

Brian Cruz is the Head of Core AI at Samba TV, where he leads the initiative to use AI to improve the TV viewing experience. He formerly worked at Salesforce as a Machine Learning Engineer, creating models for forecasting sales revenue as part of Einstein Guidance. He has a degree in Pure Mathematics from UC Berkeley.

Photo of Emily McMilin

Emily McMilin

Research Scientist

Emily McMilin is a Senior Research Scientist and Independent Researcher working at the intersection of NLP and Causal Inference. She obtained her Ph.D. in Electrical Engineering from Stanford University and prior to that an M.Sc. from University of Victoria, and a B.Sc. from Stanford in Symbolic Systems.

Photo of Victor Geislinger

Victor Geislinger

Machine Learning Engineer

Victor Geislinger is a machine learning engineer and is dedicated to sharing his knowledge with others. Victor recently joined Google as a software engineer focused on AI/ML but has been programming and educating others for over a decade since studying physics and math at the University of California, Santa Cruz.

Photo of Jason Lin

Jason Lin

Chief Scientist, Reasonly AI

Jason has developed deep learning algorithms and AI applications at Lyft self-driving, Spotify and Google DeepMind. Formerly a Stanford Online and UN keynote speaker, he's earned a M.S. in Machine Learning from Georgia Tech and coauthored NLP and computer vision papers with MIT.

Photo of Erick Galinkin

Erick Galinkin

Principal AI Researcher

Erick Galinkin is a hacker and computer scientist, leading research at the intersection of security and artificial intelligence at Rapid7. He has spoken at numerous industry and academic conferences on topics ranging from malware development to game theory in security.

Photo of Giacomo Vianello

Giacomo Vianello

Principal Data Scientist

Giacomo Vianello is an end-to-end data scientist with a passion for state-of-the-art but practical technical solutions. He is Principal Data Scientist at Cape Analytics, where he develops AI systems to extract intelligence from geospatial imagery bringing, cutting-edge AI solutions to the insurance and real estate industries.

Photo of Chuyi Shang

Chuyi Shang

UC Berkeley ML Researcher

Chuyi Shang is a machine learning researcher at Berkeley and a member of the Machine Learning @ Berkeley organization. He conducts research in video understanding and multimodal learning at Berkeley's AI Research Lab (BAIR), and has also conducted ML research at Berkeley's Haas School of Business.

Photo of Annabel Ng

Annabel Ng

UC Berkeley ML Researcher

Annabel Ng is an EECS undergrad at UC Berkeley, where she's researching brain-inspired vision models to improve image encodings in a Berkeley AI Research lab. She also leads the workshop division at Machine Learning @ Berkeley where she delivers lectures and develops interactive ML content for students.

Photo of Derek Xu

Derek Xu

UC Berkeley ML Researcher

Derek Xu is an ML Student Researcher at Sky Computing Lab. He's also an ML Engineer and Lecturer at ML@B and teaches a modern computer vision course at UC Berkeley. He is a 3rd year student at UCB studying EECS and Business Administration through the M.E.T. Program. In the past, he was also a SWE Intern at Salesforce.

Photo of Nathaniel Haynam

Nathaniel Haynam

ML Researcher at BAIR

Nathaniel Haynam is an ML Researcher at BAIR, where they push the edge of inverse reinforcement learning for multi-agent simulations. They are a ML Engineer and Lecturer in Machine Learning at Berkeley, teaching a modern computer vision course at UC Berkeley. They are a computer science major at UC Berkeley.

Photo of Valerie Scarlata

Valerie Scarlata

Technical Content Developer at Udacity

Valerie is a Sr. Technical Content Developer at Udacity who has developed and taught a broad range of computing curricula for multiple colleges and universities. She is a former professor and software engineer for over 10 years specializing in web, mobile, voice assistant, and full-stack application development.

Photo of Chang She

Chang She

CEO and Co-founder of LanceDB

Chang has nearly two decades of experience building and teaching data / ML tooling. He was the second major contributor to pandas, an adjunct at Columbia for introduction to data science, and ran engineering at TubiTV focusing on recommender systems. Most recently, Chang co-founded LanceDB to build the next generation database for AI.

Photo of Sergei Kozyrenko

Sergei Kozyrenko

Senior Staff Engineer

Sergei Kozyrenko is a technology leader with over 20 years of diverse industry experience - he’s built trading engines, banking software, learning management systems, co-founded an AI startup that accurately predicted street parking availability and even automated shooting of high-powered lasers at blocks of chocolate.

The Udacity Difference

Combine technology training for employees with industry experts, mentors, and projects, for critical thinking that pushes innovation. Our proven upskilling system goes after success—relentlessly.

Demonstrate proficiency with practical projects

Projects are based on real-world scenarios and challenges, allowing you to apply the skills you learn to practical situations, while giving you real hands-on experience.

  • Gain proven experience

  • Retain knowledge longer

  • Apply new skills immediately

Top-tier services to ensure learner success

Reviewers provide timely and constructive feedback on your project submissions, highlighting areas of improvement and offering practical tips to enhance your work.

  • Get help from subject matter experts

  • Learn industry best practices

  • Gain valuable insights and improve your skills