Udacity Logo
Log InJoin for Free

Flying Car and Autonomous Flight Engineer

Nanodegree Program

Master autonomous flight software engineering skills as you learn about drone robotics, develop sophisticated flying car systems, and write real code for real aircraft.

Master autonomous flight software engineering skills as you learn about drone robotics, develop sophisticated flying car systems, and write real code for real aircraft.

Advanced

3 months

Real-world Projects

Completion Certificate

Last Updated December 22, 2023

Skills you'll learn:
3d robot motion control • Quadrotor dynamics • Basic probability • Pid controller
Prerequisites:
Intermediate computer programming • Basic calculus • Basic physics

Courses In This Program

Course 1 1 week

Introduction to Autonomous Flight

In this course, you will get an introduction to flight history, challenges, and vehicles. You will learn about our quadrotor test platform, work in our custom simulator, and build your first project—getting a quadrotor to take-off and fly around a backyard!

Course 2 4 weeks

Planning

Flying robots must traverse complex, dynamic environments. Wind, obstacles, unreliable sensor data, and other randomness all present significant challenges. In this course, you will learn the fundamentals of aerial path planning. You will begin with 2D problems, optimize your solutions using waypoints, and then scale your solutions to three dimensions. You will apply these skills in your second project—autonomously navigating your drone through a dense urban environment.

Course 3 4 weeks

Controls

In the previous course, we implemented 3D path planning but assumed a solution for actually following paths. In reality, moving a flying vehicle requires determining appropriate low-level motor controls. In this course, you will build a nonlinear cascaded controller and incorporate it into your software in the project.

Course 4 4 weeks

Estimation

In this course, we will finish peeling back the layers of your autonomous flight solution. Instead of assuming perfect sensor readings, you will utilize sensor fusion and filtering. You will design an Extended Kalman Filter (EKF) to estimate attitude and position from IMU and GPS data of a flying robot.

Taught By The Best

Photo of Sebastian Thrun

Sebastian Thrun

Founder and Executive Chairman, Udacity

As the Founder and Chairman of Udacity, Sebastian's mission is to democratize education by providing lifelong learning to millions of students worldwide. He is also the founder of Google X, where he led projects including the Self-Driving Car, Google Glass, and more.

Photo of Andy Brown

Andy Brown

Curriculum Lead

Andy has a bachelor's degree in physics from MIT, and taught himself to program after college (mostly with Udacity courses). He has been helping Udacity make incredible educational experiences since the early days of the company.

Photo of Jake Lussier

Jake Lussier

Product Lead

Jake is a PhD Candidate in AI at Stanford University focused on robotics, perception, and human-centered design. Prior to serving as Product Lead at Udacity, he founded an early-stage food-technology startup and consulted on flying cars.

Photo of Raffaello D'Andrea

Raffaello D'Andrea

Instructor

Raffaello is a Professor of Dynamic Systems and Control at the Swiss Federal Institute of Technology (ETH) in Zurich. He is also the founder of Verity Studios, and a co-founder of Kiva Systems (now Amazon Robotics).

Photo of Angela Schoellig

Angela Schoellig

Instructor

Angela is an Assistant Professor at the University of Toronto Institute for Aerospace Studies (UTIAS), and an Associate Director of the Center for Aerial Robotics Research and Education (CARRE) at the University of Toronto.

Photo of Nicholas Roy

Nicholas Roy

Instructor

Nicholas Roy is a Professor in the Department of Aeronautics & Astronautics, and a member of the Computer Science and Artificial Intelligence Laboratory, at MIT. He also founded Project Wing at X.

Photo of Sergei Lupashin

Sergei Lupashin

Instructor

Sergei has a PhD in MechE from ETH Zurich and a BS in ECE from Cornell. He brings experience from projects such as industrial drones, self-driving cars and controls testbeds. He is a TED Fellow and founder of Fotokite.

Ratings & Reviews

Average Rating: 4.7 Stars

(115 Reviews)

Page 1 of 23

The Udacity Difference

Combine technology training for employees with industry experts, mentors, and projects, for critical thinking that pushes innovation. Our proven upskilling system goes after success—relentlessly.

Demonstrate proficiency with practical projects

Projects are based on real-world scenarios and challenges, allowing you to apply the skills you learn to practical situations, while giving you real hands-on experience.

  • Gain proven experience

  • Retain knowledge longer

  • Apply new skills immediately

Top-tier services to ensure learner success

Reviewers provide timely and constructive feedback on your project submissions, highlighting areas of improvement and offering practical tips to enhance your work.

  • Get help from subject matter experts

  • Learn industry best practices

  • Gain valuable insights and improve your skills