Free Course

Intro to Data Analysis

Data Analysis Using NumPy and Pandas

About this Course

This course will introduce you to the world of data analysis. You'll learn how to go through the entire data analysis process, which includes:

  • Posing a question
  • Wrangling your data into a format you can use and fixing any problems with it
  • Exploring the data, finding patterns in it, and building your intuition about it
  • Drawing conclusions and/or making predictions
  • Communicating your findings

You'll also learn how to use the Python libraries NumPy, Pandas, and Matplotlib to write code that's cleaner, more concise, and runs faster.

This course is part of the Data Analyst Nanodegree.

Course Cost
Free
Timeline
Approx. 6 weeks
Skill Level
beginner
Included in Product

Rich Learning ContentRich Learning Content

Interactive QuizzesInteractive Quizzes

Taught by Industry ProsTaught by Industry Pros

Self-Paced LearningSelf-Paced Learning

Course Leads

Caroline Buckey

Caroline Buckey

Instructor

What You Will Learn

Prerequisites and Requirements

To take this course, you should be comfortable programming in Python and familiar with Python concepts like classes, objects, and modules. The Introduction to Python Programming course would be a good place to start learning that material.

See the Technology Requirements for using Udacity.

Why Take This Course

This course is a good first step towards understanding the data analysis process as a whole. Before delving into each individual phase, it is important to learn the difference between all phases of the process and how they relate to each other. After taking this course, you will be better positioned to succeed in other courses in the Data Analyst Nanodegree program. For example, a student who started with Data Analysis with R, which covers the exploratory data analysis phase, might not understand at that point the difference between data exploration and data wrangling. By taking this course first, you will learn what each phase accomplishes and how it fits into the larger process.

This course also covers the Python libraries NumPy, Pandas, and Matplotlib, which are indispensable tools for doing data analysis in Python. Their many convenient functions and high performance make writing data analysis code a lot easier!

What do I get?
  • Instructor videos
  • Learn by doing exercises
  • Taught by industry professionals