Real-world projects from industry experts
With real-world projects and immersive content built in partnership with top-tier companies, you’ll master the tech skills companies want.
Learn the deep reinforcement learning skills that are powering amazing advances in AI. Then start applying these to applications like video games and robotics.
05Days07Hrs48Min18Sec
At 10-15 hrs/week
Get access to classroom immediately on enrollment
Learn cutting-edge deep reinforcement learning algorithms—from Deep Q-Networks (DQN) to Deep Deterministic Policy Gradients (DDPG). Apply these concepts to train agents to walk, drive, or perform other complex tasks, and build a robust portfolio of deep reinforcement learning projects.
This program requires experience with Python, probability, machine learning, and deep learning.
Master the fundamentals of reinforcement learning by writing your own implementations of many classical solution methods.
Apply deep learning architectures to reinforcement learning tasks. Train your own agent that navigates a virtual world from sensory data.
Learn the theory behind evolutionary algorithms and policy-gradient methods. Design your own algorithm to train a simulated robotic arm to reach target locations.
Learn how to apply reinforcement learning methods to applications that involve multiple, interacting agents. These techniques are used in a variety of applications, such as the coordination of autonomous vehicles.
With real-world projects and immersive content built in partnership with top-tier companies, you’ll master the tech skills companies want.
Our knowledgeable mentors guide your learning and are focused on answering your questions, motivating you, and keeping you on track.
You’ll have access to Github portfolio review and LinkedIn profile optimization to help you advance your career and land a high-paying role.
Tailor a learning plan that fits your busy life. Learn at your own pace and reach your personal goals on the schedule that works best for you.
We provide services customized for your needs at every step of your learning journey to ensure your success.
project reviewers
projects reviewed
reviewer rating
avg project review turnaround time
technical mentors
median response time
Alexis is an applied mathematician with a Masters in Computer Science from Brown University and a Masters in Applied Mathematics from the University of Michigan. She was formerly a National Science Foundation Graduate Research Fellow.
Arpan is a computer scientist with a PhD from North Carolina State University. He teaches at Georgia Tech (within the Masters in Computer Science program), and is a coauthor of the book Practical Graph Mining with R.
Mat is a former physicist, research neuroscientist, and data scientist. He did his PhD and Postdoctoral Fellowship at the University of California, Berkeley.
Luis was formerly a Machine Learning Engineer at Google. He holds a PhD in mathematics from the University of Michigan, and a Postdoctoral Fellowship at the University of Quebec at Montreal.
Cezanne is a machine learning educator with a Masters in Electrical Engineering from Stanford University. As a former researcher in genomics and biomedical imaging, she’s applied machine learning to medical diagnostic applications.
Dana is an electrical engineer with a Masters in Computer Science from Georgia Tech. Her work experience includes software development for embedded systems in the Automotive Group at Motorola, where she was awarded a patent for an onboard operating system.
Chhavi is a Computer Science graduate student at New York University, where she researches machine learning algorithms. She is also an electronics engineer and has worked on wireless systems.
Juan is a computational physicist with a Masters in Astronomy. He is finishing his PhD in Biophysics. He previously worked at NASA developing space instruments and writing software to analyze large amounts of scientific data using machine learning techniques.
Miguel is a software engineer at Lockheed Martin. He earned a Masters in Computer Science at Georgia Tech and is an Instructional Associate for the Reinforcement Learning and Decision Making course. He’s the author of Grokking Deep Reinforcement Learning.
Pay as you go
per
/
/
Pay upfront and save an extra 0%
for - access