About this Course

This is the second course in the 3-course Machine Learning Series and is offered at Georgia Tech as CS7641. Taking this class here does not earn Georgia Tech credit.

Ever wonder how Netflix can predict what movies you'll like? Or how Amazon knows what you want to buy before you do? The answer can be found in Unsupervised Learning!

Closely related to pattern recognition, Unsupervised Learning is about analyzing data and looking for patterns. It is an extremely powerful tool for identifying structure in data. This course focuses on how you can use Unsupervised Learning approaches -- including randomized optimization, clustering, and feature selection and transformation -- to find structure in unlabeled data.

Series Information: Machine Learning is a graduate-level series of 3 courses, covering the area of Artificial Intelligence concerned with computer programs that modify and improve their performance through experiences.

If you are new to Machine Learning, we suggest you take these 3 courses in order.

The entire series is taught as an engaging dialogue between two eminent Machine Learning professors and friends: Professor Charles Isbell (Georgia Tech) and Professor Michael Littman (Brown University).

Play Trailer Play Trailer
Course Cost
Free
Timeline
Approx. 1 month
Skill Level
Intermediate
Included in Course
  • Icon course 01 3edf6b45629a2e8f1b490e1fb1516899e98b3b30db721466e83b1a1c16e237b1 Rich Learning Content

  • Icon course 04 2edd94a12ef9e5f0ebe04f6c9f6ae2c89e5efba5fd0b703c60f65837f8b54430 Interactive Quizzes

  • Icon course 02 2d90171a3a467a7d4613c7c615f15093d7402c66f2cf9a5ab4bcf11a4958aa33 Taught by Industry Pros

  • Icon course 05 237542f88ede3178ac4845d4bebf431ddd36d9c3c35aedfbd92e148c1c7361c6 Self-Paced Learning

  • Icon course 03 142f0532acf4fa030d680f5cb3babed8007e9ac853d0a3bf731fa30a7869db3a Student Support Community

Join the Path to Greatness

This free course is your first step towards a new career with the Machine Learning Engineer Nanodegree Program.

Free Course

Machine Learning: Unsupervised Learning

by Georgia Institute of Technology

Enhance your skill set and boost your hirability through innovative, independent learning.

Icon steps 54aa753742d05d598baf005f2bb1b5bb6339a7d544b84089a1eee6acd5a8543d

Course Leads

  • Charles Isbell
    Charles Isbell

    Instructor

  • Michael Littman
    Michael Littman

    Instructor

  • Pushkar Kolhe
    Pushkar Kolhe

    Instructor

What You Will Learn

Lesson 1: Randomized optimization

  • Optimization, randomized
  • Hill climbing
  • Random restart hill climbing
  • Simulated annealing
  • Annealing algorithm
  • Properties of simulated annealing
  • Genetic algorithms
  • GA skeleton
  • Crossover example
  • What have we learned
  • MIMIC
  • MIMIC: A probability model
  • MIMIC: Pseudo code
  • MIMIC: Estimating distributions
  • Finding dependency trees
  • Probability distribution

Lesson 2: Clustering

  • Clustering and expectation maximization
  • Basic clustering problem
  • Single linkage clustering (SLC)
  • Running time of SLC
  • Issues with SLC
  • K-means clustering
  • K-means in Euclidean space
  • K-means as optimization
  • Soft clustering
  • Maximum likelihood Gaussian
  • Expectation Maximization (EM)
  • Impossibility theorem

Lesson 3: Feature Selection

  • Algorithms
  • Filtering and Wrapping
  • Speed
  • Searching
  • Relevance
  • Relevance vs. Usefulness

Lesson 4: Feature Transformation

  • Feature Transformation
  • Words like Tesla
  • Principal Components Analysis
  • Independent Components Analysis
  • Cocktail Party Problem
  • Matrix
  • Alternatives

Lesson 5: Information Theory

  • History -Sending a Message
  • Expected size of the message
  • Information between two variables
  • Mutual information
  • Two Independent Coins
  • Two Dependent Coins
  • Kullback Leibler Divergence

Unsupervised Learning Project

Prerequisites and Requirements

We recommend you take Machine Learning 1: Supervised Learning prior to taking this course.

This class will assume that you have programming experience as you will be expected to work with python libraries such as numpy and scikit. A good grasp of probability and statistics is also required. Udacity's Intro to Statistics, especially Lessons 8, 9 and 10, may be a useful refresher.

An introductory course like Udacity's Introduction to Artificial Intelligence also provides a helpful background for this course.

See the Technology Requirements for using Udacity.

Why Take This Course

You will learn about and practice a variety of Unsupervised Learning approaches, including: randomized optimization, clustering, feature selection and transformation, and information theory.

You will learn important Machine Learning methods, techniques and best practices, and will gain experience implementing them in this course through a hands-on final project in which you will be designing a movie recommendation system (just like Netflix!).

What do I get?
  • Instructor videos
  • Learn by doing exercises
  • Taught by industry professionals

Thanks for your interest!

We'll be in touch soon.

Icon globe e82eae5d45465aba4fbe4bb746905ce55dc3324f310b79c60e4a20089057d347

Udacity 现已提供中文版本! A Udacity tem uma página em português para você! There's a local version of Udacity for you! Sprechen Sie Deutsch?

Besuchen Sie de.udacity.com und entdecken Sie lokale Angebote, unsere Partnerunternehmen und Udacitys deutschsprachigen Blog.

前往优达学城中文网站 Ir para a página brasileira Go to Indian Site Icon flag de deedb1a7a695700236cb6ef4204ddbede5d197dab9b47716c87a0b4d5d9fc325 Zu de.udacity.com continue in English