Skip to content

Intel® Edge AI for IoT Developers

Nanodegree Program

Lead the development of cutting-edge Edge AI applications for the future of the Internet of Things. Leverage the Intel® Distribution of OpenVINO™ Toolkit to fast-track development of high-performance computer vision & deep learning inference applications.

04Days06Hrs56Min29Sec

In collaboration with
  • Intel

What you will learn

  1. Intel® Edge AI for IoT Developers

    3 months to complete

    Leverage the Intel® Distribution of OpenVINO™ Toolkit to fast-track development of high-performance computer vision and deep learning inference applications, and run pre-trained deep learning models for computer vision on-premise. You will identify key hardware specifications of various hardware types (CPU, VPU, FPGA, and Integrated GPU), and utilize the Intel® DevCloud for the Edge to test model performance on the various hardware types. Finally, you will use software tools to optimize deep learning models to improve performance of Edge AI systems.

    Prerequisite knowledge

    1. Edge AI Fundamentals with OpenVINO™

      Leverage a pre-trained model for computer vision inferencing. You will convert pre-trained models into the framework agnostic intermediate representation with the Model Optimizer, and perform efficient inference on deep learning models through the hardware-agnostic Inference Engine. Finally, you will deploy an app on the edge, including sending information through MQTT, and analyze model performance and use cases

    2. Hardware for Computer Vision & Deep Learning Application Deployment

      Grow your expertise in choosing the right hardware. Identify key hardware specifications of various hardware types (CPU, VPU, FPGA, and Integrated GPU). Utilize the Intel® DevCloud for the Edge to test model performance and deploy power-efficient deep neural network inference on on the various hardware types. Finally, you will distribute workload on available compute devices in order to improve model performance.

    3. Optimization Techniques and Tools for Computer Vision & Deep Learning Applications

      Learn how to optimize your model and application code to reduce inference time when running your model at the edge. Use different software optimization techniques to improve the inference time of your model. Calculate how computationally expensive your model is. Use the DL Workbench to optimize your model and benchmark the performance of your model. Use a VTune amplifier to find and fix hotspots in your application code. Finally, package your application code and data so that it can be easily deployed to multiple devices.

All our programs include:

  • Real-world projects from industry experts

    With real-world projects and immersive content built in partnership with top-tier companies, you’ll master the tech skills companies want.

  • Technical mentor support

    Our knowledgeable mentors guide your learning and are focused on answering your questions, motivating you, and keeping you on track.

  • Career services

    You’ll have access to Github portfolio review and LinkedIn profile optimization to help you advance your career and land a high-paying role.

  • Flexible learning program

    Tailor a learning plan that fits your busy life. Learn at your own pace and reach your personal goals on the schedule that works best for you.

Program offerings

  • Class Content

    • Content co-created with Intel®
    • Real-world projects
    • Project reviews
    • Project feedback from experienced reviewers
  • Student services

    • Technical mentor support
    • Student community
  • Career services

    • Github review
    • Linkedin profile optimization

Succeed with personalized services.

We provide services customized for your needs at every step of your learning journey to ensure your success.

Get timely feedback on your projects.

  • Personalized feedback
  • Unlimited submissions and feedback loops
  • Practical tips and industry best practices
  • Additional suggested resources to improve
  • 1,400+

    project reviewers

  • 2.7M

    projects reviewed

  • 88/100

    reviewer rating

  • 1.1 hours

    avg project review turnaround time

Mentors available to answer your questions.

  • Support for all your technical questions
  • Questions answered quickly by our team of technical mentors
  • 1,400+

    technical mentors

  • 0.85 hours

    median response time

Learn with the best.

Learn with the best.

  • Stewart Christie

    Community Manager - IoT Developer Program at Intel®

    Stewart is a Technical Evangelist for Intel®, responsible for running workshops, creating content, and supporting the developer community in IoT. He is skilled in developing applications that interface hardware with software for computer vision, robotics, and language processing.

  • Michael Virgo

    Senior Curriculum Manager at Udacity

    After beginning his career in business, Michael utilized Udacity Nanodegree programs to build his technical skills, eventually becoming a Self-Driving Car Engineer at Udacity before switching roles to work on curriculum development for a variety of AI and Autonomous Systems programs.

  • Soham Chatterjee

    Graduate Student at the Nanyang Technological University

    Soham is an Intel® Software Innovator and a former Deep Learning Researcher at Saama Technologies. He is currently a Masters by Research student at NTU, Singapore. His research is on Edge Computing, IoT and Neuromorphic Hardware.

  • Vaidheeswaran Archana

    Graduate Student at the National University of Singapore

    Archana is a graduate student at NUS. She is currently pursuing her research in Deep Learning and Smart Grids, under Professor Dipti Srinivasan. Archana is an Intel® Software Innovator and a former Deep Learning Engineer at Saama Technologies.

Program details

Program update
  • Note: this program is not currently accepting new enrollments.
Program overview: Why should I take this program?
  • Why should I enroll?
  • What jobs will this program prepare me for?
  • How do I know if this program is right for me?
  • What is Edge AI? What are some applications of this technology?
  • What is the InteI® DevCloud for the Edge?
  • What is the Intel® Distribution of OpenVINO™ Toolkit and the Deep Learning Workbench?
  • What makes the Intel® Edge AI for IoT Developers Nanodegree program unique?
Enrollment and admission
  • Do I need to apply? What are the admission criteria?
  • What are the prerequisites for enrollment?
  • If I do not meet the requirements to enroll, what should I do?
Tuition and term of program
  • How is this Nanodegree program structured?
  • How long is this Nanodegree program?
  • Can I switch my start date? Can I get a refund?
  • I have graduated from the Intel® Edge AI for IoT Developers Nanodegree program, but I want to keep learning. Where should I go from here?
Software and hardware: What do I need for this program?
  • What software and versions will I need in this program?